Prediksi Penjualan Mobil dalam Negeri sebagai Penentu Kebijakan Pengelolaan Kompetensi Keahlian Teknik Kendaraan Ringan (TKR) di Sekolah Menengah Kejuruan (SMK)
Abstract
Sales of four-wheeled vehicles in the domestic market at the beginning of 2021 experienced a decline on a monthly and annual basis as a result of the Covid-19 pandemic. This has caused the wheels of the economy not to turn normally as a result of social restrictions. Therefore, this study was conducted to analyze and predict the increase in sales of four-wheeled vehicles using machine learning algorithms. This study uses literature studies using journals about prediction models. To obtain the appropriate algorithm, a comparison of the test results of the journals used is carried out. This prediction of domestic car sales is used to make policies for managing the competence of Light Vehicle Engineering (TKR) expertise at SMK. The results of this study produced a prediction model with the best performance, namely SARIMA with an MSE value of 0.89 and a Backpropagation Artificial Neural Network with an MSE value of 0.44
Downloads
References
Alfaruq, S. M., Achmad, N., Mahendra, S., Kendaraan, T., Smk, R., & Bangsa, T. (2020). Pengaruh Sarana Prasarana Bengkel Terhadap Hasil Belajar Siswa Teknik Kendaraan Ringan. Journal of Vocational Education and Automotive Technology, 1(1), 30–35.
Atika, P. D., & Rasim. (2019). Implementasi Jaringan Syaraf Tiruan Metode Backpropagation untuk Prediksi Penjualan Mobil Bekas. Jurnal ICT : Information Communication & Technology, 18(2), 107–112.
Badan Pusat Statistik. (2020). Dampak Hasil Survey Sosial Demografi Dampak COVID-19. In BPS RI (Vol. 1999, Issue December).
Bozkurt, Ö. Ö., Biricik, G., & Taysi, Z. C. (2017). Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market Ö. PLoS ONE, 12(4). https://doi.org/10.1371/journal.pone.0175915
BPS. (2021). STATISTIK INDONESIA: STATISTICAL YEARBOOK OF INDONESIA 2022. Statistik Indonesia 2020, 1101001.
Chen, P., Niu, A., Liu, D., Jiang, W., & Ma, B. (2018). Time Series Forecasting of Temperatures using SARIMA: An Example from Nanjing. IOP Conference Series: Materials Science and Engineering, 394(5). https://doi.org/10.1088/1757-899X/394/5/052024
Churrohmah, M. (2020). Peramalan Penjualan Mobil di Indonesia Menggunakan Data Runtun Waktu Dengan Logika Ruey Chyn Tsaur. Skripsi Sarjana Fakultas Sains Dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.
Covid-19, S. T. P. (2021). Analisis Data COVID-19 Indonesia (Update Per 24 Oktober 2021).
Desmonda, D., Tursina, T., & Irwansyah, M. A. (2018). Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series. Jurnal Sistem Dan Teknologi Informasi (JUSTIN), 6(4), 141. https://doi.org/10.26418/justin.v6i4.27036
eviyulia, evi. (2021). Pemanfaatan ANN untuk Prediksi Penjualan Online Industri Rumahan selama Pandemi Covid-19. Jurnal Sains Dan Informatika, 7(1), 1–7. https://doi.org/10.22216/jsi.v7i1.234
Farahani, D. S., Momeni, M., & Amiri, N. S. (2016). Car sales forecasting using artificial neural networks and analytical hierarchy process. Data Analytics 2016 - The Fifth International Conferences on Data Analytics, 57–62.
Fariz, A. (2014). Peramalan Jumlah Penjualan Mobil dengan Jaringan Syaraf Tiruan Menggunakan Metode Backpropagation.
Haq, A., & Aditio, J. J. (2018). Identifikasi Kebutuhan Konsumen Produk Mobil Etios Valco Di PT. TMMIN. JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, 4(4). https://doi.org/10.36722/sst.v4i4.305
Jupiyandi, S., Saniputra, F. R., Pratama, Y., Dharmawan, M. R., & Cholissodin, I. (2019). Pengembangan Deteksi Citra Mobil untuk Mengetahui Jumlah Tempat Parkir Menggunakan CUDA dan Modified YOLO. Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(4). https://doi.org/10.25126/jtiik.2019641275
Juwanda, A., Barus, S. G., Prasetyo, T. A., Anggadha, F., & ... (2021). Analisa Peramalan Penjualan Mobil dengan Metode Autoregressive Integrated Moving Average (ARIMA). …, September, 96–102.
Lestari, N., Lestari, N., & Wahyuningsih, N. (2012). PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (Studi kasus : Kusuma Agrowisata). Jurnal Sains Dan Seni ITS, 1(1), A29–A33.
Lusiana, A., & Yuliarty, P. (2020). PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X. Industri Inovatif : Jurnal Teknik Industri, 10(1), 11–20. https://doi.org/10.36040/industri.v10i1.2530
Maksum, H. (2015). Upaya Meningkatkan Relevansi Keterampilan Lulusan Jurusan Teknik OtomotiKebutuhan Dunia Usaha/Industri. Prosiding Konvensi Nasional APTEKINDO VII Dan Temu Karya XVIII FPTK/FT-JPTK Se-Indonesia, 403–407.
Muis, T. Y. (2017). Sistem Peramalan Penjualan Mobil Menggunakan Metode Weighted Moving Average.
Pakaja, F., Naba, A., & Purwanto. (2012). Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor. Eeccis, 6(1), 23–28.
Petropoulos, F. (2022). Forecasting: Theory and Practice. International Journal of Forecasting, 38(3).
Pratama, B. (2018). Peramalan Penjualan Mobil Toyota Di Indonesia Menggunakan Metode Fuzzy Time Series Cheng.
Rantauni, D. A., & Sukmawati, E. (2022). Correlation of Knowledge and Compliance of Implementing 5m Health Protocols in the Post-Covid-19 Pandemic Period. In Science Midwifery (Vol. 10, Issue 4). Online. www.midwifery.iocspublisher.orgjournalhomepage:www.midwifery.iocspublisher.org
Ririd, A. R. T. H., Hani’ah, M., & Putri, I. K. (2021). Peramalan Penjualan Mobil Menggunakan Holt–Winters Exponential Smoothing. Sentia 2021, 12(0).
Rizkiyani, M., & Nuswantoro, U. D. (2014). PENERAPAN FORECASTING METHODS UNTUK MENINGKATKAN STRATEGI Sistem Informasi Fakultas Ilmu Komputer. Sistem Informasi Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang, 12.
Wahyu ngestisari. (2020). The Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras. Indonesian Journal of Data and Science, 1(3). https://doi.org/10.33096/ijodas.v1i3.18
Wahyudi, R., & Munir, S. (2018). Rancang Bangun Aplikasi Client Customer Relationship Management (CRM) Berbasis Mobile Studi Kasus CV Esindo Multi Tata. Jurnal Informatika Terpadu, 4(2). https://doi.org/10.54914/jit.v4i2.151
Copyright (c) 2023 Yustina Amita Utama, Fachrul Kurniawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal allows anyone to compose, correct, and do derivative works, even for commercial purposes, as long as they credit for the original work. This license is the freest. It is recommended for maximum distribution and use of licensed material.
The submitted paper is assumed not to contain any proprietary materials that are not protected by patent rights or patent applications; The responsibility for technical content and protection of proprietary materials rests with the authors and their organizations and not the responsibility of journal or its editorial staff. The primary (first/appropriate) author is responsible for ensuring that the article has been viewed and approved by all other authors. The author's responsibility is to obtain all necessary copyright waivers to use any copyrighted material in the manuscript before submission.
Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities Jurnal Pendidikan, Sains dan Teknologi recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Pendidikan, Sains dan Teknologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share a copy and redistribute the material in any medium or format
- Adapt a remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.