Prediksi Penjualan Mobil dalam Negeri sebagai Penentu Kebijakan Pengelolaan Kompetensi Keahlian Teknik Kendaraan Ringan (TKR) di Sekolah Menengah Kejuruan (SMK)

  • Yustina Amita Utama UIN Maulana Malik Ibrahim Malang, Indonesia
  • Fachrul Kurniawan UIN Maulana Malik Ibrahim Malang, Indonesia

Abstract

Sales of four-wheeled vehicles in the domestic market at the beginning of 2021 experienced a decline on a monthly and annual basis as a result of the Covid-19 pandemic. This has caused the wheels of the economy not to turn normally as a result of social restrictions. Therefore, this study was conducted to analyze and predict the increase in sales of four-wheeled vehicles using machine learning algorithms. This study uses literature studies using journals about prediction models. To obtain the appropriate algorithm, a comparison of the test results of the journals used is carried out. This prediction of domestic car sales is used to make policies for managing the competence of Light Vehicle Engineering (TKR) expertise at SMK. The results of this study produced a prediction model with the best performance, namely SARIMA  with an MSE value of 0.89 and a Backpropagation Artificial Neural Network  with an MSE value of 0.44

Downloads

Download data is not yet available.

Author Biography

Fachrul Kurniawan, UIN Maulana Malik Ibrahim Malang, Indonesia

Universitas Islam Negeri Maulana Malik Ibrahim Malang

References

Alfaruq, S. M., Achmad, N., Mahendra, S., Kendaraan, T., Smk, R., & Bangsa, T. (2020). Pengaruh Sarana Prasarana Bengkel Terhadap Hasil Belajar Siswa Teknik Kendaraan Ringan. Journal of Vocational Education and Automotive Technology, 1(1), 30–35.

Atika, P. D., & Rasim. (2019). Implementasi Jaringan Syaraf Tiruan Metode Backpropagation untuk Prediksi Penjualan Mobil Bekas. Jurnal ICT : Information Communication & Technology, 18(2), 107–112.

Badan Pusat Statistik. (2020). Dampak Hasil Survey Sosial Demografi Dampak COVID-19. In BPS RI (Vol. 1999, Issue December).

Bozkurt, Ö. Ö., Biricik, G., & Taysi, Z. C. (2017). Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market Ö. PLoS ONE, 12(4). https://doi.org/10.1371/journal.pone.0175915

BPS. (2021). STATISTIK INDONESIA: STATISTICAL YEARBOOK OF INDONESIA 2022. Statistik Indonesia 2020, 1101001.

Chen, P., Niu, A., Liu, D., Jiang, W., & Ma, B. (2018). Time Series Forecasting of Temperatures using SARIMA: An Example from Nanjing. IOP Conference Series: Materials Science and Engineering, 394(5). https://doi.org/10.1088/1757-899X/394/5/052024

Churrohmah, M. (2020). Peramalan Penjualan Mobil di Indonesia Menggunakan Data Runtun Waktu Dengan Logika Ruey Chyn Tsaur. Skripsi Sarjana Fakultas Sains Dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Covid-19, S. T. P. (2021). Analisis Data COVID-19 Indonesia (Update Per 24 Oktober 2021).

Desmonda, D., Tursina, T., & Irwansyah, M. A. (2018). Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series. Jurnal Sistem Dan Teknologi Informasi (JUSTIN), 6(4), 141. https://doi.org/10.26418/justin.v6i4.27036

eviyulia, evi. (2021). Pemanfaatan ANN untuk Prediksi Penjualan Online Industri Rumahan selama Pandemi Covid-19. Jurnal Sains Dan Informatika, 7(1), 1–7. https://doi.org/10.22216/jsi.v7i1.234

Farahani, D. S., Momeni, M., & Amiri, N. S. (2016). Car sales forecasting using artificial neural networks and analytical hierarchy process. Data Analytics 2016 - The Fifth International Conferences on Data Analytics, 57–62.

Fariz, A. (2014). Peramalan Jumlah Penjualan Mobil dengan Jaringan Syaraf Tiruan Menggunakan Metode Backpropagation.

Haq, A., & Aditio, J. J. (2018). Identifikasi Kebutuhan Konsumen Produk Mobil Etios Valco Di PT. TMMIN. JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, 4(4). https://doi.org/10.36722/sst.v4i4.305

Jupiyandi, S., Saniputra, F. R., Pratama, Y., Dharmawan, M. R., & Cholissodin, I. (2019). Pengembangan Deteksi Citra Mobil untuk Mengetahui Jumlah Tempat Parkir Menggunakan CUDA dan Modified YOLO. Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(4). https://doi.org/10.25126/jtiik.2019641275

Juwanda, A., Barus, S. G., Prasetyo, T. A., Anggadha, F., & ... (2021). Analisa Peramalan Penjualan Mobil dengan Metode Autoregressive Integrated Moving Average (ARIMA). …, September, 96–102.

Lestari, N., Lestari, N., & Wahyuningsih, N. (2012). PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (Studi kasus : Kusuma Agrowisata). Jurnal Sains Dan Seni ITS, 1(1), A29–A33.

Lusiana, A., & Yuliarty, P. (2020). PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X. Industri Inovatif : Jurnal Teknik Industri, 10(1), 11–20. https://doi.org/10.36040/industri.v10i1.2530

Maksum, H. (2015). Upaya Meningkatkan Relevansi Keterampilan Lulusan Jurusan Teknik OtomotiKebutuhan Dunia Usaha/Industri. Prosiding Konvensi Nasional APTEKINDO VII Dan Temu Karya XVIII FPTK/FT-JPTK Se-Indonesia, 403–407.

Muis, T. Y. (2017). Sistem Peramalan Penjualan Mobil Menggunakan Metode Weighted Moving Average.

Pakaja, F., Naba, A., & Purwanto. (2012). Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor. Eeccis, 6(1), 23–28.

Petropoulos, F. (2022). Forecasting: Theory and Practice. International Journal of Forecasting, 38(3).

Pratama, B. (2018). Peramalan Penjualan Mobil Toyota Di Indonesia Menggunakan Metode Fuzzy Time Series Cheng.

Rantauni, D. A., & Sukmawati, E. (2022). Correlation of Knowledge and Compliance of Implementing 5m Health Protocols in the Post-Covid-19 Pandemic Period. In Science Midwifery (Vol. 10, Issue 4). Online. www.midwifery.iocspublisher.orgjournalhomepage:www.midwifery.iocspublisher.org

Ririd, A. R. T. H., Hani’ah, M., & Putri, I. K. (2021). Peramalan Penjualan Mobil Menggunakan Holt–Winters Exponential Smoothing. Sentia 2021, 12(0).

Rizkiyani, M., & Nuswantoro, U. D. (2014). PENERAPAN FORECASTING METHODS UNTUK MENINGKATKAN STRATEGI Sistem Informasi Fakultas Ilmu Komputer. Sistem Informasi Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang, 12.

Wahyu ngestisari. (2020). The Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras. Indonesian Journal of Data and Science, 1(3). https://doi.org/10.33096/ijodas.v1i3.18

Wahyudi, R., & Munir, S. (2018). Rancang Bangun Aplikasi Client Customer Relationship Management (CRM) Berbasis Mobile Studi Kasus CV Esindo Multi Tata. Jurnal Informatika Terpadu, 4(2). https://doi.org/10.54914/jit.v4i2.151

Published
2023-02-08
How to Cite
Amita Utama, Y., & Kurniawan, F. (2023). Prediksi Penjualan Mobil dalam Negeri sebagai Penentu Kebijakan Pengelolaan Kompetensi Keahlian Teknik Kendaraan Ringan (TKR) di Sekolah Menengah Kejuruan (SMK). Jurnal Pendidikan Dan Kewirausahaan, 11(2), 424-433. https://doi.org/10.47668/pkwu.v11i2.752
Section
Articles