FT KLASIFIKASI SERANGAN DISTRIBUTED DENIAL OF SERVICE MENGGUNAKAN ENSEMBLE STACKING

  • Juan Parez Mangku Alamsyah Universitas Islam Indonesia
  • Fayruz Rahma Universitas Islam Indonesia
  • Arrie Kurniawardhani Universitas Islam Indonesia
Keywords: distributed denial of service, ensemble learning, intrusion detection systems, machine learning, stacking.

Abstract

Serangan Distributed Denial of Service (DDoS) merupakan jenis serangan siber yang bertujuan untuk membuat layanan atau sumber daya jaringan tidak dapat diakses oleh pengguna yang sah dengan membanjiri lalu lintas jaringan secara masif. Pola serangan DDoS yang semakin kompleks dan bervariasi menuntut adanya sistem deteksi yang tidak hanya andal, tetapi juga adaptif terhadap berbagai jenis serangan. Sebagian besar penelitian sebelumnya masih terbatas pada klasifikasi biner sehingga kurang efektif dalam menghadapi tantangan klasifikasi serangan yang lebih beragam. Penelitian ini bertujuan untuk mengembangkan model Intrusion Detection System (IDS) berbasis machine learning dengan pendekatan ensemble learning untuk klasifikasi multiclass serangan DDoS. Model ini dibangun menggunakan pendekatan stacking, dengan K-Nearest Neighbors, Decision Tree, Naive Bayes, dan Support Vector Machine sebagai base learners, serta Logistic Regression sebagai meta learner. Dataset CIC-DDoS2019 digunakan sebagai sumber data untuk proses pelatihan dan pengujian model. Hasil evaluasi menunjukkan bahwa model ensemble stacking memberikan kinerja terbaik dengan accuracy sebesar 78,8%, F1-score sebesar 78,4%, dan nilai AUC tertinggi sebesar 0,982. Dengan demikian, pendekatan ensemble learning terbukti mampu meningkatkan kinerja dan keakuratan sistem deteksi serangan DDoS dalam skenario klasifikasi multiclass dibandingkan model individual.

Downloads

Download data is not yet available.

References

Aamir, M., & Ali Zaidi, S. M. (2021). Clustering based semi-supervised machine learning for DDoS attack classification. Journal of King Saud University - Computer and Information Sciences, 33(4), 436–446. https://doi.org/10.1016/J.JKSUCI.2019.02.003

Adedeji, K. B., Abu-Mahfouz, A. M., & Kurien, A. M. (2023). DDoS Attack and Detection Methods in Internet-Enabled Networks: Concept, Research Perspectives, and Challenges. Journal of Sensor and Actuator Networks 2023, Vol. 12, Page 51, 12(4), 51. https://doi.org/10.3390/JSAN12040051

Alashhab, A. A., Zahid, M. S., Isyaku, B., Elnour, A. A., Nagmeldin, W., Abdelmaboud, A., … Maiwada, U. D. (2024). Enhancing DDoS Attack Detection and Mitigation in SDN Using an Ensemble Online Machine Learning Model. IEEE Access, 12, 51630–51649. https://doi.org/10.1109/ACCESS.2024.3384398

Arya, A., Kumar, A., & Ahmad, S. S. (2023). DDoS Attack Detection Using Ensemble Machine Learning Approach. 2023 14th International Conference on Computing Communication and Networking Technologies, ICCCNT 2023. https://doi.org/10.1109/ICCCNT56998.2023.10306750

Bhayo, J., Shah, S. A., Hameed, S., Ahmed, A., Nasir, J., & Draheim, D. (2023). Towards a machine learning-based framework for DDOS attack detection in software-defined IoT (SD-IoT) networks. Engineering Applications of Artificial Intelligence, 123, 106432. https://doi.org/10.1016/J.ENGAPPAI.2023.106432

Butt, H. A., Harthy, K. S. Al, Shah, M. A., Hussain, M., Amin, R., & Rehman, M. U. (2024). Enhanced DDoS Detection Using Advanced Machine Learning and Ensemble Techniques in Software Defined Networking. Computers, Materials and Continua, 81(2), 3003–3031. https://doi.org/10.32604/CMC.2024.057185

Cheng, J., Sun, J., Yao, K., Xu, M., & Cao, Y. (2022). A variable selection method based on mutual information and variance inflation factor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 268, 120652. https://doi.org/10.1016/J.SAA.2021.120652

Comito, C., & Pizzuti, C. (2022). Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review. Artificial Intelligence in Medicine, 128, 102286. https://doi.org/10.1016/J.ARTMED.2022.102286

DDoS evaluation dataset (CIC-DDoS2019) | Datasets | Research | Canadian Institute for Cybersecurity | UNB. Retrieved 06/19/2025 from https://www.unb.ca/cic/datasets/ddos-2019.html

Deepa, V., Sudar, K. M., & Deepalakshmi, P. (2019). Design of Ensemble Learning Methods for DDoS Detection in SDN Environment. Proceedings - International Conference on Vision Towards Emerging Trends in Communication and Networking, ViTECoN 2019. https://doi.org/10.1109/VITECON.2019.8899682

Fathima, A., Devi, G. S., & Faizaanuddin, M. (2023). Improving distributed denial of service attack detection using supervised machine learning. Measurement: Sensors, 30, 100911. https://doi.org/10.1016/J.MEASEN.2023.100911

Kamble, V. H., & Dale, M. P. (2022). Machine learning approach for longitudinal face recognition of children. Machine Learning for Biometrics: Concepts, Algorithms and Applications, 1–27. https://doi.org/10.1016/B978-0-323-85209-8.00011-0

Lazzarini, R., Tianfield, H., & Charissis, V. (2023). A stacking ensemble of deep learning models for IoT intrusion detection. Knowledge-Based Systems, 279, 110941. https://doi.org/10.1016/J.KNOSYS.2023.110941

Liu, G., Li, X., Guo, Y., Zhang, L., Liu, H., & Ai, H. (2024). Ensemble multiclassification model for predicting developmental toxicity in zebrafish. Aquatic Toxicology, 271, 106936. https://doi.org/10.1016/J.AQUATOX.2024.106936

Macedo, F., Valadas, R., Carrasquinha, E., Oliveira, M. R., & Pacheco, A. (2022). Feature selection using Decomposed Mutual Information Maximization. Neurocomputing, 513, 215–232. https://doi.org/10.1016/J.NEUCOM.2022.09.101

Mienye, I. D., & Sun, Y. (2022). A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access, 10, 99129–99149. https://doi.org/10.1109/ACCESS.2022.3207287

Mihoub, A., Fredj, O. Ben, Cheikhrouhou, O., Derhab, A., & Krichen, M. (2022). Denial of service attack detection and mitigation for internet of things using looking-back-enabled machine learning techniques. Computers & Electrical Engineering, 98, 107716. https://doi.org/10.1016/J.COMPELECENG.2022.107716

Moustafa, N. (2021). A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets. Sustainable Cities and Society, 72, 102994. https://doi.org/10.1016/J.SCS.2021.102994

Munir, M., Ardiansyah, I., Santoso, J. D., Mustopa, A., & Mulyatun, S. (2022). DETECTION AND MITIGATION OF DISTRIBUTED DENIAL OF SERVICE ATTACKS ON NETWORK ARCHITECTURE SOFTWARE DEFINED NETWORKING USING THE NAIVE BAYES ALGORITHM. Journal of Information System Management (JOISM), 3(2), 51–55. https://doi.org/10.24076/JOISM.2022V3I2.656

NETSCOUT DDoS Threat Intelligence Report - Latest Cyber Threat Intelligence Report. Retrieved 06/16/2025 from https://www.netscout.com/threatreport

Ogunsanya, M., Isichei, J., & Desai, S. (2023). Grid search hyperparameter tuning in additive manufacturing processes. Manufacturing Letters, 35, 1031–1042. https://doi.org/10.1016/J.MFGLET.2023.08.056

Paranjape, A., Katta, P., & Ohlenforst, M. (2022). Automated Data Pre-processing for Machine Learning based Analyses. In COLLA 2022: The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications (pp. 1–8). International Academy, Research, and Industry Association (IARIA). Retrieved from https://personales.upv.es/thinkmind/dl/conferences/colla/colla_2022/colla_2022_1_10_50012.pdf

Rafie, A., Moradi, P., & Ghaderzadeh, A. (2023). A Multi-Objective online streaming Multi-Label feature selection using mutual information. Expert Systems with Applications, 216, 119428. https://doi.org/10.1016/J.ESWA.2022.119428

Taha, A. A., & Malebary, S. J. (2022). A Hybrid Meta-Classifier of Fuzzy Clustering and Logistic Regression for Diabetes Prediction. Computers, Materials & Continua, 71(3), 6089–6105. https://doi.org/10.32604/CMC.2022.023848

Targeted by 20.5 million DDoS attacks, up 358% year-over-year: Cloudflare’s 2025 Q1 DDoS Threat Report. Retrieved 06/16/2025 from https://blog.cloudflare.com/ddos-threat-report-for-2025-q1/

Zhou, H., Wang, X., & Zhu, R. (2022). Feature selection based on mutual information with correlation coefficient. Applied Intelligence, 52(5), 5457–5474. https://doi.org/10.1007/S10489-021-02524-X/METRICS

Published
2025-10-02
How to Cite
Alamsyah, J., Rahma, F., & Kurniawardhani, A. (2025). FT KLASIFIKASI SERANGAN DISTRIBUTED DENIAL OF SERVICE MENGGUNAKAN ENSEMBLE STACKING. EDUSAINTEK: Jurnal Pendidikan, Sains Dan Teknologi, 12(4), 1874 -. https://doi.org/10.47668/edusaintek.v12i4.1930
Section
Articles