FT KLASIFIKASI SERANGAN DISTRIBUTED DENIAL OF SERVICE MENGGUNAKAN ENSEMBLE STACKING
Abstract
Serangan Distributed Denial of Service (DDoS) merupakan jenis serangan siber yang bertujuan untuk membuat layanan atau sumber daya jaringan tidak dapat diakses oleh pengguna yang sah dengan membanjiri lalu lintas jaringan secara masif. Pola serangan DDoS yang semakin kompleks dan bervariasi menuntut adanya sistem deteksi yang tidak hanya andal, tetapi juga adaptif terhadap berbagai jenis serangan. Sebagian besar penelitian sebelumnya masih terbatas pada klasifikasi biner sehingga kurang efektif dalam menghadapi tantangan klasifikasi serangan yang lebih beragam. Penelitian ini bertujuan untuk mengembangkan model Intrusion Detection System (IDS) berbasis machine learning dengan pendekatan ensemble learning untuk klasifikasi multiclass serangan DDoS. Model ini dibangun menggunakan pendekatan stacking, dengan K-Nearest Neighbors, Decision Tree, Naive Bayes, dan Support Vector Machine sebagai base learners, serta Logistic Regression sebagai meta learner. Dataset CIC-DDoS2019 digunakan sebagai sumber data untuk proses pelatihan dan pengujian model. Hasil evaluasi menunjukkan bahwa model ensemble stacking memberikan kinerja terbaik dengan accuracy sebesar 78,8%, F1-score sebesar 78,4%, dan nilai AUC tertinggi sebesar 0,982. Dengan demikian, pendekatan ensemble learning terbukti mampu meningkatkan kinerja dan keakuratan sistem deteksi serangan DDoS dalam skenario klasifikasi multiclass dibandingkan model individual.
Downloads
References
Aamir, M., & Ali Zaidi, S. M. (2021). Clustering based semi-supervised machine learning for DDoS attack classification. Journal of King Saud University - Computer and Information Sciences, 33(4), 436–446. https://doi.org/10.1016/J.JKSUCI.2019.02.003
Adedeji, K. B., Abu-Mahfouz, A. M., & Kurien, A. M. (2023). DDoS Attack and Detection Methods in Internet-Enabled Networks: Concept, Research Perspectives, and Challenges. Journal of Sensor and Actuator Networks 2023, Vol. 12, Page 51, 12(4), 51. https://doi.org/10.3390/JSAN12040051
Alashhab, A. A., Zahid, M. S., Isyaku, B., Elnour, A. A., Nagmeldin, W., Abdelmaboud, A., … Maiwada, U. D. (2024). Enhancing DDoS Attack Detection and Mitigation in SDN Using an Ensemble Online Machine Learning Model. IEEE Access, 12, 51630–51649. https://doi.org/10.1109/ACCESS.2024.3384398
Arya, A., Kumar, A., & Ahmad, S. S. (2023). DDoS Attack Detection Using Ensemble Machine Learning Approach. 2023 14th International Conference on Computing Communication and Networking Technologies, ICCCNT 2023. https://doi.org/10.1109/ICCCNT56998.2023.10306750
Bhayo, J., Shah, S. A., Hameed, S., Ahmed, A., Nasir, J., & Draheim, D. (2023). Towards a machine learning-based framework for DDOS attack detection in software-defined IoT (SD-IoT) networks. Engineering Applications of Artificial Intelligence, 123, 106432. https://doi.org/10.1016/J.ENGAPPAI.2023.106432
Butt, H. A., Harthy, K. S. Al, Shah, M. A., Hussain, M., Amin, R., & Rehman, M. U. (2024). Enhanced DDoS Detection Using Advanced Machine Learning and Ensemble Techniques in Software Defined Networking. Computers, Materials and Continua, 81(2), 3003–3031. https://doi.org/10.32604/CMC.2024.057185
Cheng, J., Sun, J., Yao, K., Xu, M., & Cao, Y. (2022). A variable selection method based on mutual information and variance inflation factor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 268, 120652. https://doi.org/10.1016/J.SAA.2021.120652
Comito, C., & Pizzuti, C. (2022). Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review. Artificial Intelligence in Medicine, 128, 102286. https://doi.org/10.1016/J.ARTMED.2022.102286
DDoS evaluation dataset (CIC-DDoS2019) | Datasets | Research | Canadian Institute for Cybersecurity | UNB. Retrieved 06/19/2025 from https://www.unb.ca/cic/datasets/ddos-2019.html
Deepa, V., Sudar, K. M., & Deepalakshmi, P. (2019). Design of Ensemble Learning Methods for DDoS Detection in SDN Environment. Proceedings - International Conference on Vision Towards Emerging Trends in Communication and Networking, ViTECoN 2019. https://doi.org/10.1109/VITECON.2019.8899682
Fathima, A., Devi, G. S., & Faizaanuddin, M. (2023). Improving distributed denial of service attack detection using supervised machine learning. Measurement: Sensors, 30, 100911. https://doi.org/10.1016/J.MEASEN.2023.100911
Kamble, V. H., & Dale, M. P. (2022). Machine learning approach for longitudinal face recognition of children. Machine Learning for Biometrics: Concepts, Algorithms and Applications, 1–27. https://doi.org/10.1016/B978-0-323-85209-8.00011-0
Lazzarini, R., Tianfield, H., & Charissis, V. (2023). A stacking ensemble of deep learning models for IoT intrusion detection. Knowledge-Based Systems, 279, 110941. https://doi.org/10.1016/J.KNOSYS.2023.110941
Liu, G., Li, X., Guo, Y., Zhang, L., Liu, H., & Ai, H. (2024). Ensemble multiclassification model for predicting developmental toxicity in zebrafish. Aquatic Toxicology, 271, 106936. https://doi.org/10.1016/J.AQUATOX.2024.106936
Macedo, F., Valadas, R., Carrasquinha, E., Oliveira, M. R., & Pacheco, A. (2022). Feature selection using Decomposed Mutual Information Maximization. Neurocomputing, 513, 215–232. https://doi.org/10.1016/J.NEUCOM.2022.09.101
Mienye, I. D., & Sun, Y. (2022). A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access, 10, 99129–99149. https://doi.org/10.1109/ACCESS.2022.3207287
Mihoub, A., Fredj, O. Ben, Cheikhrouhou, O., Derhab, A., & Krichen, M. (2022). Denial of service attack detection and mitigation for internet of things using looking-back-enabled machine learning techniques. Computers & Electrical Engineering, 98, 107716. https://doi.org/10.1016/J.COMPELECENG.2022.107716
Moustafa, N. (2021). A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets. Sustainable Cities and Society, 72, 102994. https://doi.org/10.1016/J.SCS.2021.102994
Munir, M., Ardiansyah, I., Santoso, J. D., Mustopa, A., & Mulyatun, S. (2022). DETECTION AND MITIGATION OF DISTRIBUTED DENIAL OF SERVICE ATTACKS ON NETWORK ARCHITECTURE SOFTWARE DEFINED NETWORKING USING THE NAIVE BAYES ALGORITHM. Journal of Information System Management (JOISM), 3(2), 51–55. https://doi.org/10.24076/JOISM.2022V3I2.656
NETSCOUT DDoS Threat Intelligence Report - Latest Cyber Threat Intelligence Report. Retrieved 06/16/2025 from https://www.netscout.com/threatreport
Ogunsanya, M., Isichei, J., & Desai, S. (2023). Grid search hyperparameter tuning in additive manufacturing processes. Manufacturing Letters, 35, 1031–1042. https://doi.org/10.1016/J.MFGLET.2023.08.056
Paranjape, A., Katta, P., & Ohlenforst, M. (2022). Automated Data Pre-processing for Machine Learning based Analyses. In COLLA 2022: The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications (pp. 1–8). International Academy, Research, and Industry Association (IARIA). Retrieved from https://personales.upv.es/thinkmind/dl/conferences/colla/colla_2022/colla_2022_1_10_50012.pdf
Rafie, A., Moradi, P., & Ghaderzadeh, A. (2023). A Multi-Objective online streaming Multi-Label feature selection using mutual information. Expert Systems with Applications, 216, 119428. https://doi.org/10.1016/J.ESWA.2022.119428
Taha, A. A., & Malebary, S. J. (2022). A Hybrid Meta-Classifier of Fuzzy Clustering and Logistic Regression for Diabetes Prediction. Computers, Materials & Continua, 71(3), 6089–6105. https://doi.org/10.32604/CMC.2022.023848
Targeted by 20.5 million DDoS attacks, up 358% year-over-year: Cloudflare’s 2025 Q1 DDoS Threat Report. Retrieved 06/16/2025 from https://blog.cloudflare.com/ddos-threat-report-for-2025-q1/
Zhou, H., Wang, X., & Zhu, R. (2022). Feature selection based on mutual information with correlation coefficient. Applied Intelligence, 52(5), 5457–5474. https://doi.org/10.1007/S10489-021-02524-X/METRICS
Copyright (c) 2025 Juan Parez Mangku Alamsyah, Fayruz Rahma, Arrie Kurniawardhani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal allows anyone to compose, correct, and do derivative works, even for commercial purposes, as long as they credit for the original work. This license is the freest. It is recommended for maximum distribution and use of licensed material.
The submitted paper is assumed not to contain any proprietary materials that are not protected by patent rights or patent applications; The responsibility for technical content and protection of proprietary materials rests with the authors and their organizations and not the responsibility of journal or its editorial staff. The primary (first/appropriate) author is responsible for ensuring that the article has been viewed and approved by all other authors. The author's responsibility is to obtain all necessary copyright waivers to use any copyrighted material in the manuscript before submission.
Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities Jurnal Pendidikan, Sains dan Teknologi recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Pendidikan, Sains dan Teknologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share a copy and redistribute the material in any medium or format
- Adapt a remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.