FT ANALISIS PERBANDINGAN NAIVE BAYES DAN SVM DALAM KLASIFIKASI GENDER DI PLATFORM TWITTER
Abstract
Munculnya media sosial telah menghasilkan sejumlah besar data tekstual yang rentan terhadap analisis untuk memahami perilaku pengguna. Penelitian ini melakukan analisis komparatif dari dua algoritma klasifikasi teks, Naive Bayes dan Support Vector Machine (SVM), dengan aplikasi untuk menentukan gender dari komentar pengguna di platform media sosial X (sebelumnya Twitter). Kumpulan data diperoleh dengan metode web scraping dan kemudian dipre-processing menggunakan mekanisme cleaning teks dan pengubahan singkatan bersama dengan ekstraksi fitur berbasis TF-IDF. Kuantitas data yang berbeda (1000, 3000, 5000) dan rasio pembagian data (70:30 dan 80:20) digunakan untuk mengevaluasi kedua algoritma. Hasilnya menunjukkan bahwa SVM mengungguli Naive Bayes dalam hal semua matriks pada dataset yang lebih besar, sementara Naive Bayes terus mempertahankan kualitasnya pada dataset yang lebih kecil. Temuan ini memiliki implikasi yang signifikan untuk pemilihan metode klasifikasi yang sesuai untuk analisis data komentar media sosial.
Downloads
Copyright (c) 2025 Ridzky Putra Dwitama, Irving Vitra Paputungan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal allows anyone to compose, correct, and do derivative works, even for commercial purposes, as long as they credit for the original work. This license is the freest. It is recommended for maximum distribution and use of licensed material.
The submitted paper is assumed not to contain any proprietary materials that are not protected by patent rights or patent applications; The responsibility for technical content and protection of proprietary materials rests with the authors and their organizations and not the responsibility of journal or its editorial staff. The primary (first/appropriate) author is responsible for ensuring that the article has been viewed and approved by all other authors. The author's responsibility is to obtain all necessary copyright waivers to use any copyrighted material in the manuscript before submission.
Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities Jurnal Pendidikan, Sains dan Teknologi recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Pendidikan, Sains dan Teknologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share a copy and redistribute the material in any medium or format
- Adapt a remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.