PREDIKSI CURAH HUJAN MENGGUNAKAN METODE ARIMA

(Studi kasus: Kabupaten Sleman, Semarang, dan Surabaya)

  • Hafidh Adiyatma Ramadhan Universitas Islam Indonesia
  • Irving Vitra Paputungan Universitas Islam Indonesia
Keywords: Rainfall Prediction, ARIMA Model, Climate Change, Data Analysis.

Abstract

Unpredictable rainfall can cause various negative impacts, especially in regions highly dependent on agriculture and infrastructure, such as Sleman Regency, Semarang, and Surabaya. Accurate weather predictions are crucial for anticipating disaster risks like floods, landslides, and droughts, as well as maintaining the sustainability of these vital sectors. This study aims to forecast rainfall in these three regions using the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model was chosen for its flexibility in adapting to existing data patterns and its ability to provide accurate and economical predictions. Historical rainfall data from these three regions were analyzed using various ARIMA parameters (p, d, q) to identify the most optimal model. The results indicate that the ARIMA model can provide reasonably accurate rainfall predictions across all three regions with varying degrees of error. Significant differences were found in the model’s performance across the regions, influenced by local geographical and climatic characteristics.

Downloads

Download data is not yet available.

References

Al’afi, A. M., Widiarti, Kurniasari, D., & Usman, M. (2020). Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral Berdasarkan data yang tersedia diperoleh model terbaik untuk peramalan penumpang pesawat di Bandar Udara Raden Intan II adalah Seasonal ARIMA (0. In Jurnal Siger Matematika (Vol. 01, Issue 01).

Alexander, & Harahab, S. (2009). LAPORAN TUGAS AKHIR PERENCANAAN EMBUNG TAMBABOYO KABUPATEN.

Aulia, N. N., Gunawan, P. H., & Rohmawati, A. A. (2018). Prediksi Curah Hujan Menggunakan Gerak Brown dan Rataan Tahunan Data Pada Missing Values. Indonesian Journal on Computing (Indo-JC), 3(2), 71. https://doi.org/10.21108/indojc.2018.3.2.233

Ayuni, R., & Saputri, F. (2019). PENERAPAN METODE FUZZY TIME SERIES UNTUK PREDIKSI PENJUALAN BERBASIS WEB PADA TOKO GROSIR 3 RODA SENGKALING. In Jurnal Mahasiswa Teknik Informatika (Vol. 3, Issue 1).

Fadlan, A., Safril, A., Suwandi, Veanti, D. P. O., Nugraheni, I. R., Septiadi, D., Harahap, D., Nuraini, N., & Munawar. (2022). Pengetahuan Tentang Iklim dan Cuaca Untuk Kemajuan Pertanian di Kabupaten Indramayu Jawa Barat.

Haghshenas, S. S., Pirouz, B., Haghshenas, S. S., Pirouz, B., Piro, P., Na, K. S., Cho, S. E., & Geem, Z. W. (2020). Prioritizing and analyzing the role of climate and urban parameters in the confirmed cases of COVID-19 based on artificial intelligence applications. International Journal of Environmental Research and Public Health, 17(10). https://doi.org/10.3390/ijerph17103730

Herlina, N., & Prasetyorini, A. (2020). Pengaruh Perubahan Iklim pada Musim Tanam dan Produktivitas Jagung (Zea mays L.) di Kabupaten Malang (Effect of Climate Change on Planting Season and Productivity of Maize (Zea mays L.) in Malang Regency). Jurnal Ilmu Pertanian Indonesia (JIPI), Januari, 25(1), 118–128. https://doi.org/10.18343/jipi.25.1.118

Hutasuhut, A. H., Anggraeni, W., & Tyasnurita, R. (2014). Pembuatan aplikasi pendukung keputusan untuk peramalan persediaan bahan baku produksi plastik blowing dan inject menggunakan metode ARIMA (Autoregressive Integrated Moving Average) di CV. Asia. Jurnal Teknik ITS, 3(2), A169-A174.

Khan, M. Y., Qayoom, A., Nizami, M. S., Siddiqui, M. S., Wasi, S., & Raazi, S. M. K. U. R. (2021). Automated Prediction of Good Dictionary EXamples (GDEX): A Comprehensive Experiment with Distant Supervision, Machine Learning, and Word Embedding-Based Deep Learning Techniques. Complexity, 2021. https://doi.org/10.1155/2021/2553199

Laia, M. L., & Setyawan, Y. (2020). Perbandingan hasil klasifikasi curah hujan menggunakan metode SVM dan NBC. Jurnal Statistika Industri Dan Komputasi, 5(02), 51-61.

Masum, S. J. H. (2019). Climatic Hazards in Bangladesh-A Literature Review. https://doi.org/10.13140/RG.2.2.10239.94882

Nur, I., & Astuti, S. P. (2006). Mengolah data statistik dengan mudah menggunakan minitab 14. Yogyakarta: Andi.

Polawan, S. S. M., & Alam, F. (2019). MEMAHAMI BENCANA BANJIR DAN LONGSOR. https://www.researchgate.net/publication/346678807

Rokach, L., & Maimon, O. (2006). Decision Trees. In Data Mining and Knowledge Discovery Handbook (pp. 165–192). Springer-Verlag. https://doi.org/10.1007/0-387-25465-x_9

Safar, N. Z. M., Ramli, A. A., Mahdin, H., Ndzi, D., & Khalif, K. M. N. K. (2019). Rain prediction using fuzzy rule based system in North-West Malaysia. Indonesian Journal of Electrical Engineering and Computer Science, 14(3), 1572–1581. https://doi.org/10.11591/ijeecs.v14.i3.pp1572-1581

Shumway, R. H., & Stoffer, D. S. (2000). Time series regression and ARIMA models. Time Series Analysis and Its Applications, 89-212. https://doi.org/https://doi.org/10.1007/978-1-4757-3261-0_2

Published
2024-11-25
How to Cite
Ramadhan, H., & Paputungan, I. (2024). PREDIKSI CURAH HUJAN MENGGUNAKAN METODE ARIMA. EDUSAINTEK: Jurnal Pendidikan, Sains Dan Teknologi, 12(1), 314 - 328. https://doi.org/10.47668/edusaintek.v12i1.1490
Section
Articles