COMPARING TRANSLATION QUALITY: GOOGLE TRANSLATE VS DEEPL FOR FOREIGN LANGUAGE TO ENGLISH

  • Elsaty Lam Marya Bunga universitas advent indonesia
  • Caroline V Katemba Universitas Advent Indonesia
Keywords: Language Translation, Accurate, Deepl, Google Translate, Latest Features

Abstract

Google Translate dan Deeple saat ini sudah sangat dikenal dan telah digunakan oleh mahasiswa di Indonesia. Penelitian ini meneliti bagaimana mahasiswa Jurusan Pendidikan Bahasa Inggris dan Jurusan Filsafat di Universitas Advent Indonesia mengevaluasi penggunaan Deepl dan Google Translate serta terjemahan yang dihasilkan. Penelitian ini menggunakan pendekatan kuantitatif dengan pengumpulan data melalui kuesioner tertutup tipe Likert.  Sebanyak 85 mahasiswa dari dua program studi yang ada, yaitu mahasiswa jurusan Pendidikan Bahasa Inggris dan juga mahasiswa Filsafat Universitas Advent Indonesia telah menggunakan Deepl dan Google Translate dalam penelitian ini.  Hasil penelitian menunjukkan bahwa mayoritas responden memiliki pendapat persepsi bahwa Deepl lebih unggul dengan persentase (73%) sedangkan Google Translate (48%) untuk hasil terjemahan yang mudah dipahami, akurat, dan tidak ada kesalahan terjemahan meskipun keduanya sama-sama dalam bahasa Inggris. kategori yang sama yang dinilai sangat baik. Sedangkan untuk fitur yang dimiliki Deepl dan Google Translate, hasil rata-rata menyebutkan Deepl lebih unggul dengan persentase (79%) sedangkan Google Translate untuk fiturnya mendapat (49%). Sedangkan untuk kecepatan dan kemampuan menjaga konteks dan nuansa, hasilnya menunjukkan Deepl lebih unggul dengan persentase (78%) sedangkan Google Translate mendapat persentase (44%). untuk hasil penguraian kata kompleks yang dihasilkan oleh Deepl dan Google Translate menyatakan bahwa Deepl lebih unggul dengan persentase (80%) untuk kecepatan serta mampu menjaga konteks dan nuansa sedangkan Google Translate mendapat persentase (40%). Dapat disimpulkan bahwa menggunakan Deepl sebagai pilihan untuk penerjemahan bahasa dari bahasa Indonesia ke bahasa Inggris atau sebaliknya dapat menjadi pilihan yang tepat untuk meningkatkan kemampuan penerjemahan siswa dan membuat siswa menjadi lebih percaya diri.

Downloads

Download data is not yet available.

References

Constantine. (2019). Google Translate Gets Voltaire: Literary Translation and the Age of Artificial Intelligence. Contemporary French and Francophone Studies, 471-479.

De Vries, R. A. (2018). Google Translate and the Post-Editing of Informatives. Machine Translation, 75-95.

Denkowski, & Lavie. (2012). Challenges in predicting machine translation utility for human post-editors. Proceedings of the 10th Conference of the Association for Machine Translation in the Americas. America: AMTA.

Eckerdal, & Hagstrom. (2017). Qualitative questionnaires as a method for information studies research. Information research.

Ferré, J. M. (2019). An Empirical Study of the Reliability of Google Translate in the Translation of Texts from the Humanities. Machine Translation, 49-71.

Fitria, T. (2021). A Review of Machine Translation Tools: The Translation’s Ability. Language Circle: Journal of Language and Literature, 162-176.

García-Carbonell A, A.-A. M. (2014). Simulation and Gaming as the future’s language of language learning and acquisition of professional competences. Back to the Future of Gaming, 214-227.

Gufroni, M., Yuliana, D., & Munawwir, Z. (2022). PEMANFAATAN GOOGLE FORMSEBAGAI PENDAFTARAN ONLINESISWA BARU di MA SABILAL MUHTADIN TAHUN PELAJARAN 2021/2022. Edusaintek: Jurnal Pendidikan, Sains dan Teknologi, 1.

H, B., & D, B. (2012). Analyzing Likert data. Journal of Extension, 50(2).

Hall, B. ‘. (2006). Theories of Culture and Communication. Communication Theory, 50–70.

Hasan, A. (2004). Menabur Benih Menuai Kasih. Persembahan Karya Bahasa, Sosial.

Hidya. (2017). PERSEPSI MAHASISWA TERHADAP PENGGUNAAN GOOGLE TRANSLATE. SEBAGAI MEDIA MENERJEMAHKAN MATERI, 60.

Huck M, N. H. (2012). Insertion and deletion models for statistical machine translation. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 347-351.

Jooste W, H. R. (2021). Philipp Koehn: Neural Machine Translation. Machine Translation, 289-299.

Katemba C., V. T. (n.d.).

Katemba C., V., Tobing J., H., & Putri A., T. (2022). Do Kahoot! Games Enhance Vocabulary Learning? Journal of Elementary Education, 393-408.

Katemba, C. V. (2021). Enhancing Vocabulary Performance Through Mobile Assisted Language Learning at a Rural School in Indonesia. Acuity: Journal of English Language, 6(1), 1-11.

Kirov V, M. B. (2022). Are Translators Afraid of Artificial Intelligence? Societies, 12.

Lavie, & Clark. (2011). Better hypothesis testing for statistical machine translation: Controlling for optimizer instability. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 176-181.

Menezes, A. (2019). The Importance of Human Post-Editing in Machine Translation Quality Assessment. In Proceedings of the 6th Brazilian Conference on Intelligent Systems, 401-412.

Mitkov. (2012). The Oxford Handbook of Computational Linguistics.

Moisieieva, Dzykovych, & Shtanko. (2023). MACHINE TRANSLATION: COMPARISON OF WORKS AND ANALYSIS OF ERRORS MADE BY DEEPL AND GOOGLE TRANSLATE. Advanced Linguistics, 78-82.

Muslihah, S. (2020). PENERAPAN METODE PEMBELAJARAN MODELING DALAM MENINGKATKAN KEMAMPUAN MENULIS KARANGAN SISWA V SEKOLAH DASAR. Educreative : Jurnal Pendidikan Kreativitas Anak, 374-380.

Ndoricimpa, & Nduwimana. (2023). The Use of ICT Tools in Learning English Autonomously. Journal of Languages and Language Teaching, 696.

Paterson. (2023). Machine translation in higher education. Perceptions, policy, and pedagogy, 14.

Petra Polakova, B. K. (2023). Using DeepL translator in learning English as an applied foreign language. An empirical pilot study.

Stockwell G, R. H. (2019). Technology, Motivation and Autonomy, and Teacher Psychology in Language Learning. Annual Review of Applied Linguistics, 40 - 51.

Surur, M., Ridhwan, M., Azis, A. A., & Noervadila, I. (2023). Improving Creative Thinking Skills of Early Childhood by Utilizing Robotic Activities in Learning Process. Journal of Childhood Development, 3(1), 79-83. https://doi.org/10.25217/jcd.v1i2.1833

Tongco. (2007). Purposive sampling as a tool for informant selection. Ethnobotany Research and Applications, 147-158.

Varlas. (2010). The Thoughtful Classroom Program. ASCD Learn.

Wuryantoro, A. (2015). Analisis Hasil Terjemahan dalam Pengajaran Penerjemahan. E-Journal IKIP PGRI Madiun, 13-14.

Published
2024-05-01
How to Cite
Bunga, E., & Katemba, C. (2024). COMPARING TRANSLATION QUALITY: GOOGLE TRANSLATE VS DEEPL FOR FOREIGN LANGUAGE TO ENGLISH. EDUSAINTEK: Jurnal Pendidikan, Sains Dan Teknologi, 11(3), 1147 - 1171. https://doi.org/10.47668/edusaintek.v11i3.1264
Section
Articles