IMPLEMENTASI INTELIJEN BISNIS UNTUK VISUALISASI POLA PEMBELIAN DENGAN ALGORITMA FP-GROWTH
(Studi Kasus: Noble Coffee Yogyakarta)
Abstract
Penelitian ini mencoba menggali pola pembelian pelanggan di Noble Coffee, sebuah kafe di Yogyakarta. Dengan menggunakan algoritma FP-Growth, analisis data dilakukan untuk mengidentifikasi aturan asosiasi antar produk dan kategori dengan penjualan tertinggi. Visualisasi data dilakukan melalui platform Power BI, memungkinkan pemahaman mendalam tentang perilaku pembelian pelanggan. Hasil analisis menunjukkan beberapa aturan asosiasi yang signifikan, seperti hubungan antara produk "King" dengan berbagai menu lainnya seperti "Mix Plater" dan "Café Latte". Analisis ini memberikan wawasan tentang produk yang sering dibeli bersamaan, memungkinkan Noble Coffee untuk merancang strategi penjualan yang lebih efektif. Penelitian ini menyoroti pentingnya analisis data dan visualisasi dalam mendukung keputusan bisnis. Melalui pendekatan ini, perusahaan dapat memahami kebutuhan pelanggan dengan lebih baik, meningkatkan kepuasan pelanggan, dan mengoptimalkan operasional mereka. Kesimpulannya, analisis data berbasis algoritma FP-Growth dan visualisasi menggunakan Power BI dapat menjadi instrumen yang efektif dalam memahami perilaku pelanggan dan meningkatkan kinerja bisnis kafe seperti Noble Coffee.
Downloads
References
Ahn, J. S., & Sohn, S. Y. (2009). Customer pattern search for after-sales service in manufacturing. Expert Systems with Applications, 36(3), 5371–5375. https://doi.org/10.1016/j.eswa.2008.06.061
Andhika Putra, R., Bayu Putra, R., & Fitri, H. (2020). ANALISIS SWOT DALAM PENENTUAN STRATEGI BISNIS KAFE 165 UNIVERSITAS PUTRA INDONESIA YPTK PADANG. Jurnal Ilmu Manajemen Terapan, 1(5), 464–476. https://doi.org/10.31933/jimt.v1i5.206
Becker, L. T., & Gould, E. M. (2019). Microsoft Power BI: Extending Excel to Manipulate, Analyze, and Visualize Diverse Data. Serials Review, 45(3), 184–188. https://doi.org/10.1080/00987913.2019.1644891
Borgelt, C. (2005). An implementation of the FP-Growth algorithm. Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, 1–5. https://doi.org/10.1145/1133905.1133907
Campbell, N. C. G., & Cunningham, M. T. (1983). Customer analysis for strategy development in industrial markets. Strategic Management Journal, 4(4), 369–380. https://doi.org/10.1002/smj.4250040407
Danuri, M. (2019). PERKEMBANGAN DAN TRANSFORMASI TEKNOLOGI DIGITAL. https://doi.org/https://doi.org/10.53845/infokam.v15i2.178
Indrayani, H. (2012). PENERAPAN TEKNOLOGI INFORMASI DALAM PENINGKATAN EFEKTIVITAS, EFISIENSI DAN PRODUKTIVITAS PERUSAHAAN. Jurnal EL-RIYASAH, 3(1), 48. https://doi.org/10.24014/jel.v3i1.664
Kurniawan, R., & Yusuf, R. (2023). PENERAPAN METODE ASOSIASI DENGAN ALGORITMA APRIORI UNTUK MENDUKUNG STRATEGI PROMOSI. EDUSAINTEK: Jurnal Pendidikan, Sains Dan Teknologi, 10(2), 514–528. https://doi.org/10.47668/edusaintek.v10i2.786
Lawless, H. T., & Heymann, H. (2010). Descriptive Analysis (pp. 227–257). https://doi.org/10.1007/978-1-4419-6488-5_10
Lee, D., Park, S.-H., & Moon, S. (2013). Utility-based association rule mining: A marketing solution for cross-selling. Expert Systems with Applications, 40(7), 2715–2725. https://doi.org/10.1016/j.eswa.2012.11.021
Lee, W. S., Moon, J., & Song, M. (2018). Attributes of the coffee shop business related to customer satisfaction. Journal of Foodservice Business Research, 21(6), 628–641. https://doi.org/10.1080/15378020.2018.1524227
Lenk, K. M., Caspi, C. E., Harnack, L., & Laska, M. N. (2018). Customer Characteristics and Shopping Patterns Associated with Healthy and Unhealthy Purchases at Small and Non-traditional Food Stores. Journal of Community Health, 43(1), 70–78. https://doi.org/10.1007/s10900-017-0389-5
Lin, W.-Y., Tseng, M.-C., & Su, J.-H. (2002). A Confidence-Lift Support Specification for Interesting Associations Mining (pp. 148–158). https://doi.org/10.1007/3-540-47887-6_14
Palepu, K. G., & Healy, P. M. (2013). Business analysis and valuation. South-Western, Cencage Learning.
Rifai, D., Fitri, S., & Ramadhan, I. N. (2022). Perkembangan Ekonomi Digital Mengenai Perilaku Pengguna Media Sosial Dalam Melakukan Transaksi. ADI Bisnis Digital Interdisiplin Jurnal, 3(1), 49–52. https://doi.org/10.34306/abdi.v3i1.752
Shanahan, J. G., & Dai, L. (2015). Large Scale Distributed Data Science using Apache Spark. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2323–2324. https://doi.org/10.1145/2783258.2789993
Susilowaty, O. A. I., & Rukismono, M. (2021). Faktor–Faktor Yang Dipertimbangkan Dalam Memilih Moka POS Sebagai Sistem Point Of Sale di Surabaya. Seminar Nasional Ilmu Terapan, 5(1), B08–B08.
Verma, R., Stock, D., & McCarthy, L. (2012). Customer Preferences for Online, Social Media, and Mobile Innovations in the Hospitality Industry. Cornell Hospitality Quarterly, 53(3), 183–186. https://doi.org/10.1177/1938965512445161
Wang, K., Tang, L., Han, J., & Liu, J. (2002). Top Down FP-Growth for Association Rule Mining (pp. 334–340). https://doi.org/10.1007/3-540-47887-6_34
Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
Wei Zhang, Hongzhi Liao, & Na Zhao. (2008). Research on the FP Growth Algorithm about Association Rule Mining. 2008 International Seminar on Business and Information Management, 315–318. https://doi.org/10.1109/ISBIM.2008.177
Wijaya, K. T., & Pratama, I. (2022). Penerapan Algoritma FP-Growth Untuk Analisis Data Transaksi Penjualan Di Internet Learning Cafe Kaliurang. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(4), 642–651. https://doi.org/10.32672/jnkti.v5i4.4585
Yana Siregar, L., & Irwan Padli Nasution, M. (2020). Perkembangan Teknologi Informasi Terhadap Peningkatan Bisnis Online. Hirarki : Jurnal Ilmiah Manajemen Dan Bisnis, 2(1), 71–75. https://journal.upp.ac.id/index.php/Hirarki/article/view/331
Copyright (c) 2024 Daffa Nayaka Bagaskara Jusuf

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal allows anyone to compose, correct, and do derivative works, even for commercial purposes, as long as they credit for the original work. This license is the freest. It is recommended for maximum distribution and use of licensed material.
The submitted paper is assumed not to contain any proprietary materials that are not protected by patent rights or patent applications; The responsibility for technical content and protection of proprietary materials rests with the authors and their organizations and not the responsibility of journal or its editorial staff. The primary (first/appropriate) author is responsible for ensuring that the article has been viewed and approved by all other authors. The author's responsibility is to obtain all necessary copyright waivers to use any copyrighted material in the manuscript before submission.
Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities Jurnal Pendidikan, Sains dan Teknologi recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Pendidikan, Sains dan Teknologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share a copy and redistribute the material in any medium or format
- Adapt a remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.